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A diagrammatic Green’s-function method is developed for the calculation of the magnetiza-

tion of a magnetic impurity in metal.
Suhl’s limit.

The validity of the approach is within Abrikosov and
Therefore, the result in this paper should be regarded as an improvement over

that obtained by Giovanini et al. insofar as the temperature range is concerned.

The magnetization of a dilute magnetic alloy was
first calculated in the s-d exchange model by Gio-
vanini et al.' to second order in perturbation theory
for general values of the magnetic field. Since
then, very little progress has been made on this
subject. Recently Osaka® calculated the magnetic
susceptibility by using Suhl’s approach. The pres-
ent author® and Brenig ef al.* made calculations on
the susceptibility by using diagrammatic methods.
The results these authors obtained are identical at
temperatures T=0, T =Ty, the Kondo temperature,
and at 7> Ty; therefore they cannot be materially
different. One essential feature of these results is
that the dressed Curie constant vanishes for the
impurity with spin S=3$ at T=0. This property is
entirely due to the impurity spin fluctuation accord-
ing to our formulation.3'* On the other hand,
Anderson, Yuval, and Hamann recently made a
much more rigorous formalism for the s-d exchange
problem. *® However, this approach is exact only
for T < Ty, and the equations they obtained are too
complicated, at least for the present, to obtain
temperature -dependent measurable quantities. In
this paper we will extend our previous method® to
calculate the magnetization of a magnetic impurity
in an arbitrary magnetic field.

In Ref. 3, the diagrams we have used to evaluate
the zero-field magnetic susceptibility are obtained
by differentiating the free-energy graphs twice with
respect to the external magnetic field B. This se-
lection of free-energy diagrams gives Suhl’s equa-
tion when functionally differentiated with respect to
the conduction-electron Green’s function. In our
present magnetization computation, the external
magnetic field comes into the calculation through
the conduction-electron propagator G(w) and the
pseudofermion Green’s function g(w).®” Then the
shift of the magnetization due to the s-d exchange
interaction is given by AM = -84 F/8B, and
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where 64 F/6G and 6A F/bg are the functional de-
rivatives of the free-energy shift A F with respect
to G and g, respectively. It is easy to see that the
first term on the right-hand side of the above equa-
tion is the shift of the conduction-electron spin
magnetization A M, and the second term denotes the
shift of the impurity spin magnetization AM,;. We
will later see that the logarithmic singular term in
B and T starts to appear in the second-order term
of AM,; on the other hand, we have noted that AM,,
up to the third order in J, does not contain any log-
arithmic singular term at all. In our subsequent
calculation of AM, only the leading logarithmic term
in each order of perturbation will be included; the
part due to AM,, except the first-order term, will
thus be neglected. In Fig. 1, graph (a) is the bare
impurity spin magnetization; (b) is the first-order
term of AM,. The reason we include it in the cal-
culation is because it is of the same order of mag-
nitude as the first-order term in AM,. Graphs (c)
and (d) represent AM ;= - (64 F/6g)(8g/8B), where
the solid line and the dotted line are, respectively,
the conduction propagator and the pseudofermion
Green’s function. The open square denotes the s-d
coupling constant (o -8)J/N, and the shaded square
is the four-point vertex function I" which represents
a summation of parquet graphs to infinite order’
in the presence of a magnetic field. 5A F/5g is the
self-energy of pseudofermion and - 8g/8B < g¥w)
are the two out-extended pseudofermion lines. At
this stage we would like to point out that the graphs
in Fig. 1 can be regarded as an exact expression
for the impurity spin magnetization within Abrikosov
and Suhl’s validity range. It is also easy to prove
that the logarithmic magnetic-field-dependent terms
of Fig. 1(d) come entirely from the B dependencies
through g(w), not through G(w). In what follows we
neglect the direct effect of B on G(w) and take into
account the effects of the magnetization of the pseu-
dofermions only.

Figure 1(a) represents the bare magnetization of
the localized impurity spin. The evaluation of the
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FIG. 1. Diagrams representing the impurity spin

magnetization.

diagram is straightforward; it is of the form
M= upgSB(S6/T)= npg (S*) , o)

where 6= upgB, pp is the Bohr magneton, and g is
the Landé g factor for impurity spin. B,S6/T is the
Brillouin function and is defined by

2S+1 (25 +1) x 1

55 Coth——¢ othzs (2)
Figures 1(b) and 1(c) represent the first-order cor-
rection to the bare magnetization. These two dia-
grams can be written together and yield the contri-
bution to the magnetization, which is

M=~ 5% K’% p)uBgBSB,<s?G>], (3)

where p is the density of states at the Fermi sur-
face.

Now we are going to evaluate the graph of Fig.
1(d) where the shaded square is the four-point vertex
function I" which represents a summation of parquet
graphs to infinite order” in the presence of the mag-
netic field. The corresponding expression for this
can be proved to have the form
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where ) is the single-particle energy’ assigned for
the pseudofermion and Sz are the z-component
spin matrices; each index g and g’ assumes 2S+1

values -S, -S+1,...,S, and n(€,) is the Fermi
function. Z(6) is defined as

S
Z(6)= 25 &MIT
MuaS

As pointed out by Abrikosov, the vertex function
can be approximately decomposed as
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+0gn* SasT(€p; A—6l€,; €, =€ +1 =0). (5)

A more rigorous decomposition of I" is given by
More.® However, our present approximation as-
sumes that the other scattering amplitudes are
small compared to ¢ and 7. Substituting (5) into (4)
and after a lengthy manipulation we obtain

M=uag<S‘)[1-}q’-p
<1+9—1n(S‘)) <1+9—ln(S‘ fj—(%;"—
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where M =My+M,;+M,. To obtain (6), we have made
the approximation by putting in M,

(€,—€g+6) (€, —€,-0) .

x|T(e, ; A-6|€,;

It is very easy to check that this approximation does
not destroy the logarithmic behavior of the inte-
grations. In order to analyze M in a nonperturba-
tive manner, we approximate the spin-flip vertex
function by Suhl’s spin-flip scattering amplitude
7(€,, 6). This approximation seems to be a good
one in the calculation of the zero-field susceptibili-
ty. Z* We assume it should be a valid one even in
the presence of a magnetic field. From Ref. 8,
I7(€,; 6)1% has the form

|7(e,, 6)] 2= | Fle,, 0)|2[1+ale,)| Fle,, 6)] 211, (7)
where

a(€,) =475(S + 1)p¥e,) ,

1
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and p(e,) is the density of states of conduction elec-
trons given by

ple,)=p(1 - €§)'72,

with the Fermi energy €,=1. Substituting (7) into
(6) and carrying out the integrations, we obtain the
following expression for M:

tanh[(x +6)/2T] )
X =€, ’
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In the given formula, the symbol {6, T} denotes the
largest of the indicated quantities, and (S*) is given
by (1) and (2); thus we have
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In the limit 6=gug B> T >T,, we have

_ Jp/N ]
1+(2Jp/N)In(gug B) 1 °

This is in agreement with the perturbation results
of Giovanini ef al.! In the limit 6 <7, we have

2
M= #ag<s'){1 ',T(z_sle) [% — tapt NP+ 1nr]}.

M=ppg( S‘>[1 (9)

7(2S +1)

(10)
This is in agreement with our susceptibility calcu-
lation. ¥* The impurity spin magnetization
M(1 -Jp/N)™t, which is normalized at large 6, has

been plotted versus g B/T from 0 to 10 for S=3
for two different coupling constants as shown in
Fig. 2. The essential feature of the curve for J#0
is that it does not show any saturated behavior at
large wg B/T as is shown in the case for J=0. The
calculation agrees qualitatively with the experi-
mental results of Kitchens and Graig® on the alloys
of paramagnetic metals with Fe as impurity.

Finally we would like to point out that the method
we have used is in the limit of the Abrikosov and
Suhl approach; only the leading logarithmic term
in each order of perturbation theory is included.
Therefore our result is not a valid one for T << Ty
and B < B, where B, is defined as uggBc
=exp (-N/2Jp).
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